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Auditory training programs are currently being exploredaasethod of
improving hearing impaired (HI) speech perception; predisowledge of
a patient’s individual differences in speech perceptidaved one to more
accurately diagnose how a training program should be imphted. Re-
mapping or variations in the weighting of acoustic cues, tluauditory
plasticity, can be examined with the detailed confusionlyees that we
have developed at UIUC. We show an analysis of the resporisEs ears
with sensorineural hearing loss to consonant-vowel stimamposed of 14
English consonants followed by the vowel,/presented in quiet and speech-
shaped noise. Although the tested tokens are noise-robdsirseambiguous
for normal-hearing listeners, the subtle natural variaim signal properties
can lead to systematic differences for HI listeners. Speifi, our recent
findings have shown token-dependent individual varigbiiit error and
confusion groups for HI listeners. A clustering analysistaf confusion data
shows that HI listeners fall into specific groups. Many oftibkeen-dependent
confusions that define these groups can also be observedroiatihearing
listeners, under higher noise levels or filtering condiomhese HI-listener
groups correspond to different acoustic-cue weightingsas, highlighting
where auditory training should be most effective.

INTRODUCTION

One of the primary goals of auditory training techniquesngiioving the consonant
recognition of listeners with sensorineural hearing lIoBsining has been shown to
be effective treatment in terms of both consonant and wardgmition; the work of
Boothroyd and Nittrouer [1988], Bronkhorst et al. [1993hgealizes these results
by demonstrating how the perception of individual phones law-context syllables
predicts the perception of words and sentences. Althougtifeiant improvements
can be observed from both analytic and synthetic trainingef8ow and Palmer,
2005], the effects are difficult to measure and are mostyeabserved for listeners
with the most pre-training recognition error [Walden et aB81]. Analysis of the
effects of training tend to focus on discrimination abikiyd overall error; the effects
on consonant confusions would provide an additional dinogrt® the analysis, often
without the collection of additional data.

In general, auditory training methodologies do not focustloa listener-specific



consonant recognition deficiencies (i.e., individualeléinces) that are present prior
to the training period. Although an identical, overarchimgproach is desirable
when initially assessing the efficacy of a training schermheépay not be the most
beneficial for providing treatment to the patient populatioOur previous works
[Trevino and Allen, 2013a,b] have shown that patients witlifto-moderate hearing
loss have consonant recognition errors that are usuallielihto a small subset of test
consonant-vowel tokens. This indicates that, for maximdiicaey and efficiency,
a targeted approach is necessary in the implementationawfirig programs. In
addition, we have explored the significant effects of tallkerability on HI perception,
particularly across tokens of the same consonant (i.ehinvitonsonant perceptual
differences). These within-consonant differences, aglaighlight the need for a
targeted, patient-specific approach, as well as the impoetaf considering token
variability in the analysis of perceptual data.

The confusion matrix has been the fundamental basis foryaingl consonant
recognition data for over 50 years [Miller and Nicely, 1955|n this paper, we

introduce a technique, k-means clustering based on thengetl distance, for
analyzing similarity of consonant confusions. This aniglys performed on a token-
by-token basis, as recommended in the conclusions of ouirgueworks on within-

consonant HI perceptual differences [Trevino and Allerd320b]. A more precise
understanding of how HI listeners are using the acoustis that are available to
them provides a detailed diagnosis, which could be useditterthe implementation
of auditory training programs.

METHODS
Subjects

Nine subjects with sensorineural hearing loss were resdfivr this study from the

Urbana-Champaign, IL community. All subjects reported Aicen English as their

first language and were paid to participate. Typanometrasuees showed no middle-
ear pathologies (type A tympanogram). The ages of eight bljests ranged from 65

to 84; one HI subject (14R) was 25 years old. Based on the tomethresholds, all

ears had>20 [dB] of hearing loss (HL) for at least one frequency in taege 0.25—-4

[kHZz].

The majority of the ears in our study have slight-to-modehaaring loss with high-
frequency sloping configurations. One HI ear (14R), has aartad high-frequency
loss, with the most hearing loss2 [kHz] and a threshold within the normal range
at 8 [kHz]. For further listener details, including levelloéaring loss, age, and most
comfortable level, see Trevino and Allen [2013a,b].

Speech materials

All stimuli used in this study were selected from the LingicidData Consortium
Database (LDC-2005S22). Speech was sampled at 16 [kHz]rtdewunaturally-
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spoken American English consonants. (. k, f, s, [, b, d, g, v, z, 3, m, n/) were used

as the test stimuli. Each consonant was spoken in an isatategsbnant-vowel (CV)
context, with the voweld/. Two tokens were selected (1 male and 1 female talker) for
each consonant, resulting in a total of 28 test tokens (14auamnts x 2 talkers = 28
tokens). The terntoken is used throughout this work to refer to a single CV speech
sample from one talker.

The 28 test tokens were selected based on their NH percegtogds in Quiet and
speech-weighted noise. To ensure that tokens were unamlsgund robust to noise,
each token was selected based on a criteri& 8f1% error for a population of 16 NH
listeners, calculated by combining results in Quiet andd] [signal-to-noise ratio
(SNR) of noise (i.e., no more than 1 error over a total N=32,tpken) [Phatak and
Allen, 2007]. Such tokens are representative of the LDCluite; Singh and Allen
[2012] shows, for the majority of tokens, a ceiling effeat fH listeners> —2 [dB]
SNR. One token offd/ (male talker, label m112) was damaged during the premarati
of the tokens, thus it has not been included in this analysis.

The stimuli were presented with flat gain at thest comfortablelevel (MCL) for each
individual HI ear. For the majority of the HI ears the MCL waspeoximately 8&-4
[dB] SPL; only two subjects did not choose an MCL within thesige (36L/R chose
68/70 [dB] SPL and 14R chose 89 [dB] SPL).

Experimental procedure

The speech was presented at 4 SNRs (0, 6, 12 [dB] and Quiety sgeech-

weighted noise, generated as described by Phatak and R08Y]. Presentations
were randomized over consonant, talker, and SNR. The tataber of presentations
for each consonant ranged frafh=40-80 for each HI ear (totd =5-10 over two

adaptive phases x 2 tokens x 4 SNRs). The VysochanskiiriReituequality was

used to verify that the number of trials were sufficient tcedetine correct perception
within a 95% confidence interval, as described in the appeofdlBingh and Allen

[2012].

All of the data-collection sessions were conducted withsthigiect seated in a single-
walled, sound-proof booth. The speech was presented maallyavia an Etymotic
ER-3 insert earphone. The contralateral ear was not maslketioded. The subject
chose their MCL (for non-test speech samples) before gpdiegan. A practice
session, with different tokens from those in the test se we first in order to
familiarize the subject with the testing paradigm and toficontheir MCL setting.
After hearing a single presentation of a token, the subjemilevchoose from the
14 possible consonant responses by clicking one of 14 Cafdabbuttons on the
graphical user interface, with the option of up to 2 add#ilotoken repetitions, to
improve accuracy. Additional experimental details arevigled in Han [2011] and
[Trevino and Allen, 2013a,b].
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Data Analysis

The variability of naturally-spoken acoustic cues can leadHl within-consonant
differences in both error and consonant confusions [Teewnd Allen, 2013a,b];
therefore, calculations at the token level are necessaanynanalysis that attempts
to understand how a HlI listener is using and interpretingat®ustic cues that are
available to them. In this paper, the data is analyzed attentlevel, with individual
data points for the HI ears.

The Hellinger distance is a metric for computing the distanetween two probability
distributions. The probability distributions that we coang in this paper are the ones
defined by each row of a confusion matrix. In the case of thiearment, there are
14 possible consonant responses. This vector of probabitiin be considered as
a point in 14-dimensional space, where each dimensionsorels to each possible
consonant response. Distances between confusion resuttsraputed within this 14-
dimensional space; the distances provide a measure ofrtamisconfusion similarity,
which can be used to compare HI ears, SNRs, or tokens.

We will show that the squared Hellinger distance is equivigie 1 minus the direction
cosine, when computed from the square root of probabilifiéss relationship allows
us to use widely-known algorithms that employ 1 minus theation cosine, such as
spherical k-means clustering, to analyze the data.P4gnr,HI) be the probability

of the consonant responséor a fixed stimuluss, SNR, and HI ear; the probabilities
for all possible responses for a fixed stimulus would be a rbth@confusion matrix.

A data point in the 14-dimensional space,is then defined ag = , /Ry, s(sr,HI),
i=1,2,3,...14. Since the vector is composed of probabilities that sub tiee points

lie on the unit sphere|x|| = 1. Letx,y be two data points in the 14-dimensional space.
We define the notation for an inner product as

<X Y >= XY
|

and the norm as
<xx>=|[xX[[2 =Y x.
|

Then the square of the Hellinger distance

1 1
H2(xy) = 5lX— Y12 = SKIE-2< xy > +]lID)
=1 < xy >= 1 [[x]|[lyl|cos(@x) = 1 cos(@y).

Thus, the spherical k-means algorithm, which forms grougeedl on 1- cos(Oyy)
between points distributed on the unit sphere, producestsabat also minimize the



Hellinger distance. The spherical k-means clustering rélgo is implemented in
MATLAB, with the kmeans() function. For each token, one of the clusters is always
composed of the data points where Hl listeners correctlggreed the consonant; the
remaining clusters are composed of the data with varyingesdsgof error. Therefore,
assuming there are errors, the minimum posdfbfer a token is 2.

Additionally, the angle between the HI listener respoxsad the plane representing
the ‘primary’ confusion groups can be calculated. With timglementation, Hl
listener data that contains varying degrees of the sameapyiwonfusions would
show zero distance between the points; non-zero distancelsl\wdicate the degree
of deviation from the primary confusion group.

The k-means algorithm groups HI listener data that is similaterms of the
confusions. The size and number of clusters is a functioh@tliversity of hearing
impairment across listeners in the study (i.e., there isxedfprior), therefore, a k-
means implementation which does not assign a prior prabataileach cluster models
the experimental setup more realistically than a Gaussiatuk& Model (GMM). The
G-means algorithm [Hamerly and Elkan, 2004] was added taontipdementation in
order to automatically select the number of meddased on an Anderson-Darling
test of statistical significance.

RESULTS

For a fixed consonant token, HI listeners vary widely in bbthdegree of error and the
SNR threshold at which errors begin to occur. Despite thdsvidual variability, we
have observed that different HI ears tend to have similagriedkependent confusions
once an error is made [Trevino and Allen, 2013b]. If HI listesgenerally share a
similar confusion group for a particular token, then an sarglitraining scheme that
corrects for this confusion should be effective for a broaguation of patients. In
order to explore the extent of the similarities across Hehers, we use the spherical
k-means clustering algorithm to group the listeners basecbafusions. The data at
all tested SNRs is used together in the k-means clusterialysig, since the different
severities of hearing impairment across the many listeleads to errors at different
SNRs.

Each cluster identified by the k-means algorithm is compos$ésteners with similar
consonant confusions. The number of clustéts,for each token is determined
by the G-means algorithm, which sele#tsiteratively based on a statistical test of
the cluster distributions [Hamerly and Elkan, 2004]. As aute of incorporating
the statistical test, the number of resulting clusteris the amount of significantly
different confusion groups that are present in our data.eikample, the case of two
resulting clustersk = 2, indicates that all of the listener data is distributedhinit
the cluster of correct-response data points and a secostecldefined by a single
confusion group. From the results in Table 1, we see that 1@fdbe 27 tokens have
K < 3, indicating that all of the HI data for these tokens fall®iane of 3 confusion-
based clusters. 22 out of 27 tokens h&veC 4. This small number of clusters for



the majority of tokens indicates that, generally, only a teleen-dependent confusion
groups are present in the HI data.

For each cluster, the primary confusions that define tAarlean, along with the
number N of data points within each cluster, are includedabld 1. Results for the
cluster of ‘correct’ responses (i.e., the cluster of datdnwb more than 1 error over
5-10 trials) are also included. From the results in Table d see that the confusions
that define the clusters can vary across tokens of the sansemant. For example,
/d, g, v/ confusions are present for the femabe//token, while only /v/ confusions
dominate the responses for the maile token. In addition, the large number of data
points, N, in the ‘correct’ clusters of all tokens indicateat the mild-to-moderate
HI listeners in this study did not have widespread erroreesehare observations that
have been made previously in Trevino and Allen [2013b]; #nalysis shows how
these observations can also be made from the results of kawhastering.

The extent of the similarity across listener responses eaquantified by the angle
between the points in the spherical vector space. Thesesngh be expressed as
direction cosines or Hellinger distances, as describekdrMethods section, and can
range from C’to 90°. The angledy ;, between a data poimtin the Kh cluster and the

k" cluster meanu provides a measure of how well each mean represents thdlovera
group of data points. This average of this meas@{@k, is analogous to the variance

within each cluster. Results f‘@xvuk are shown in Table 1. For reference, when each
data pointx is the result of 5-10 presentations, as ours are, an angl8°e2Ztlies
between a vector of correct responses and a vector with &esmgprrect response.
Overall, the clusters defined by a larger number of primamfusions have larger
éx,uk values. Systematic groupings of HI data in terms of consboanfusions is
observed for all the tested tokens.

DISCUSSION

Our past studies [Trevino and Allen, 2013a,b] have fountithdisteners with mild-
to-moderate hearing loss make errors with only a small $uks@5%) of listener-
dependent consonant tokens at low noise levels, althowglertior for these tokens
can be as high as chance performance. In addition, we olosgiyr@ficant individual
variability across HI ears in terms of the degree of error ardch sounds are
perceived in error, despite similar hearing thresholdsesghindings verify the need
for an individualized approach when implementing an augitibaining program.
Based on our data, an individualized auditory training paogwould, ideally, first
identify the sounds/acoustic cues that a Hl listener hdigdify with in quiet and low-
levels of noise, in order to focus the training appropriatll addition, this initial test
would provide a precise outcome measure after the traisimgmpleted. A test that
identifies a HI listener’s difficulties in terms of identifyg and interpreting acoustic
cues would be ideal when prescribing such a training prograicontext-free, high-
entropy (i.e., large response set), consonant identificatisk paired with a token-
level analysis allows one to identify the specific acougtie-processing difficulties of



CV | k" Mean (N) 16, || €V [kK"Mean(N) |0y |
bar101 | kg : correct (39) 12 bami12 | ki : correct (32)] 15°
K=2 |k:b,d, g,V (29) 36° K=4 |ky:b,v(21) 27°

ks: b, v (9) 1o
dag10s | kg : correct (61) 10° dapmi1g | kg @ correct (61) 10°
K=3 K=2 |ky:d,g,t(7) 25°
fap10g | k1 : correct (39) 14° -

K=2 | ko:f,s,v(29) 34°
gar109 | k1 : correct (35) 8° gam111 | k1 : correct (54) 10¢°
K=2 |ko:b,d,f,g,v(33) | 48 K=4
kar103 | k1 : correct (50) 11° kapmi11 | kg : correct (56) 9°
K=3 |ka:k,p,t(11) 25° K=2 |ko:k, t(12) 23
ks:t(7) 22
Mag103 | K1 : correct (46) 11° Map11g | K1 : correct (61) 9°
K=3 |ko:m,v(12) 28 K=2 |ky:m,n,v(7) | 16°
ks : m, n (10) 26°
Nag101 | ki : correct (52) 1 Nnapmi1g | kg : correct (43) 12°
K=4 |ko:m,n(9) 25° K=4 |k:m,n (15) 4°
par1o03 | k1 : correct (59) 13 pami1g | Ki @ correct (61) 12°
K=6 K=2 |ko:f,p,t,z(7)| 35
sar103 | k1 : correct (55) 11° sami120 | K1 : correct (45) 11°
K=3 |k»:s,3,2(7) 26° K=5 |k:s,z(11) 10
tari0s | K1 : correct (61) 6° tami12 | kg @ correct (62) 6°
K=2 |k:f,p,s, t(7) 4 K=2
var101 | kg : correct (43) 171° vapmi1s | K1 : correct (29) 14°
K=3 | kx:f,v(15) 32 K=7 |ko:p,v(12) 25°
ks:b,d, m,n,v(10) 38 ks:m,n,v(11)| 28&
Jag103 | k1 : correct (60) 7° Jami1s | k1 : correct (65) 6°
K=2 |kx:s,[,z(8) 28 K=2
3ar105 | Kq @ correct (42) 11° 3am107 | Ko @ correct (36) 13°
K=4 | ky:z(16) 18° K=3 |ke:9,3,2(17) | 32

ks:v,3,z(15) | 3&
Zag10s | k1 : correct (35) 14° zZap11g | ki@ correct (38)] 14°
K=7 | kx:3,z(11) 9° K=6 |kx:3,2z(11) 18

ks:s,3,2(8) 19 ks:v,3,2(9) 200

Table 1: Clustering results for 27 CV tokens, talker gender and ifieation
number is indicated by the CV subscript. The resulting totainber of
clustersK is included in the CV column. Each row shows the data for a
single cluster; to focus on clusters with similar listenesisters with less
than 6 data points are omitted. The main confusions conmgrtsiek" cluster
means & 5%) are listed undeéd" Mean (N), with N being the number of data
points within each cluster (out of 68 total). Similaritieg@ss HI ears within

a cluster are quantified by the average angle, between théereraf each
cluster and the'®R mean Oy ;..



each HI individual.

We have introduced k-means clustering as a flexible tool f@yaing confusion
matrix data. Such a clustering analysis can be conductdtbutitaveraging across
tokens, consonants, SNRs or HI ears. The k-means clustét$ ddita correspond
to different acoustic cue weighting schemes and indicatergv/lauditory correction
or training may be useful. Although there are many individiitierences across Hi
listeners, the small number of resulting clusters from thalysis of our data shows
that the listeners are processing and interpreting thesticotues that are present in
speech similarly. These results suggest that, once thalsdtuat are difficult for a
HI listener are diagnosed by a speech test, a common cuetorracheme can be
effective for a broad population of listeners.
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